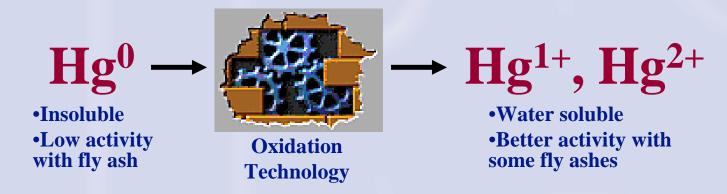
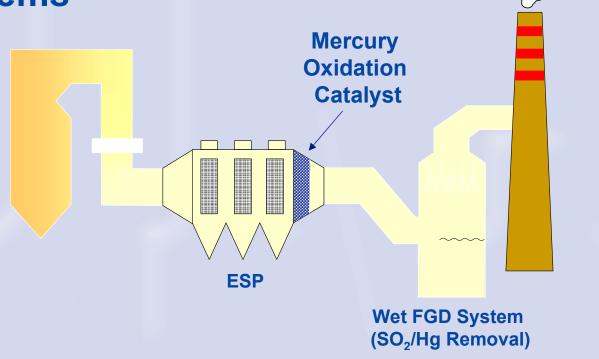

Catalytic Oxidation of Mercury for Enhanced Control across Wet FGD Absorbers

URS Corporation Austin, TX



Mercury Oxidation Technologies

Objective: Enhance Mercury Removal by Increasing Flue Gas Mercury Oxidation



- Mercury reports to byproduct solids
 - Enhanced mercury removal across wet or dry scrubbers
 - Increased removal with fly ash

Catalytic Oxidation Process Technology Concept

Process

 Fixed catalysts used to oxidize Hg⁰ in flue gas to increase removal across wet FGD systems

Catalytic Oxidation Process Development Background

- Initial concept development funded by EPRI
- DOE NETL/ EPRI co-funded MegaPRDA Project
 - 6-month catalyst exposure tests at 3 coal-fired sites (completed in 2001)
- DOE/NETL, EPRI, utility co-funded program
 - On-going DOE cooperative agreement program
 - Pilot evaluations of catalytic oxidation process

Project Team

NETL Bruce Lani
Project Manager

Mark Strohfus Loren Loritz

Al Lee

Current Project

- Pilot-scale tests of honeycomb Hg⁰ oxidation catalysts at two sites
 - 4 catalysts tested in parallel (2000 acfm each)
 - 14-months automated operation at each site
 - Monthly activity measurements with Hg SCEM
- Host sites:
 - GRE Coal Creek Station (ND lignite)
 - pilot test started 10/02
 - CPS J.K.Spruce Plant (PRB coal)
 - pilot test to start summer '03

Catalyst Selection for Pilot Unit

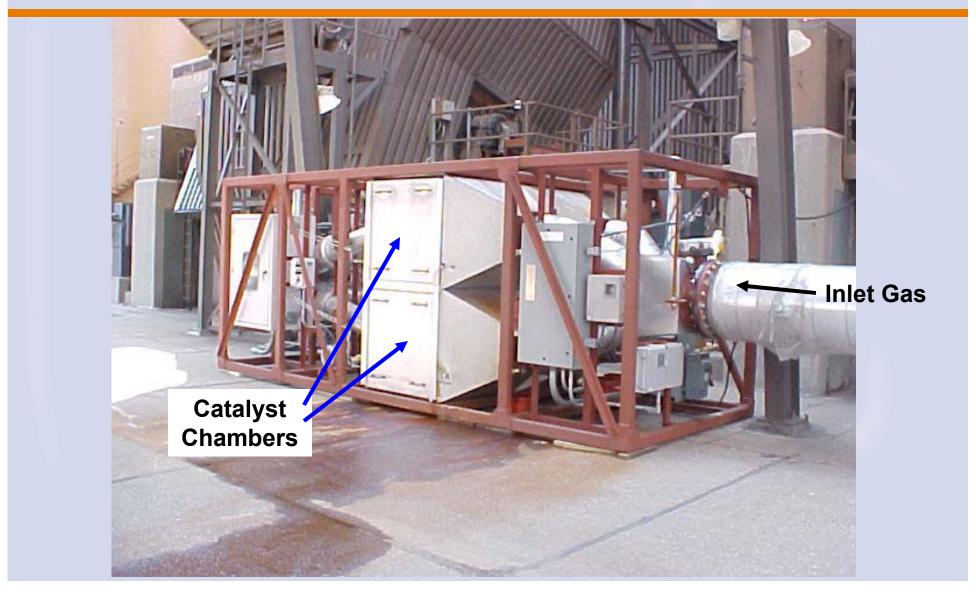
- Hg oxidation performance in actual flue gas
 - Candidate catalysts identified from previous MegaPRDA sand-bed field tests
- Honeycomb catalyst activity measured in laboratory
 - Simulated flue gases at Coal Creek and Spruce
- Mass transfer model
 - Project pilot catalyst performance as a function of catalyst cell pitch, cross section, length

Catalyst Types Evaluated - CCS

Metal-based

- Palladium (Pd #1) [10/02]
- Ti/V (SCR) [10/02]

Carbon-based


Experimental activated carbons(C #6) [6/03]

Fly-ash-based

High LOI subbituminous ash (SBA #5) [12/02]

Pilot Test Unit Installed at Coal Creek Station

Catalyst Dimensions Selected for Coal Creek Pilot Unit

Catalyst	Cells per in. ² (cpsi)	Cross Section (in. x in.)	Length (in.)	Area Velocity (sft/hr)
Pd #1	64	30 x 30	9	49
C #6	64	36 x 36	9	33
SBA #5	64	36 x 36	9	33
SCR (Agillon Gmbh)	46	35.4 x 35.4	19.7	19

Agillon Gmbh SCR Catalyst

SBA #5 Catalyst Module One of Three

Initial Pilot Catalyst Activity (October 02)

Flue Gas Rate (acfm)		nlet Hg xidation (%)	Ηç		a Vel. ft/hr)		_	ea Vel. sft/hr)
1500		43		95	37	6	<mark>67</mark>	<mark>14</mark>
2000		32		<mark>93</mark>	<mark>49</mark>	6	62	19
2300		42		89	56	6	61	22
Highlighted values represent selected long-term catalyst operating conditions								

Catalyst Activity Results

	Hg ⁰ Oxidation across Catalyst (%)				
Catalyst (Flow Rate, acfm)	Oct02	Dec02	Jan03	Jan03 (after cleaning)	
Pd #1 (2000)	93	53	58	91	
SCR (1500)	67	28	37	61	
SBA #5 (2000)	na*	na*	59	75	

Efforts to Resolve Ash Buildup

- Sonic horns installed to control buildup
 - Analytec 17" horn
 - Initially installed on Pd #1 chamber
 - good results for ΔP, Hg oxidation
 - Recently installed on remaining chambers

Catalyst Activity Results - Pd #1

Date	Hg ⁰ Oxidation Across Catalyst (%)
October 02	93
December 02	53
January 03	58
January 03 (after cleaning)	91
March 03 (after cleaning)	93
April 03 (with sonic horn)*	89
June 03	92
*Confounded by Hg adsorption	

Flue Gas Characterization Hg Results - Oct02

- Ontario Hydro measurements on pilot unit inlet/outlets, full-scale wet FGD
 - Confirmed catalyst oxidation results measured with EPRI semi-continuous Hg analyzer
 - Confirmed low oxidation percentage in ESP outlet flue gas (e.g., pilot unit inlet)
 - High removal of oxidized Hg, little or no Hg⁰ reemissions across CCS FGD absorber

Flue Gas Characterization Results - Oct02

- Controlled Condensation results showed no oxidation of SO₂ across Pd#1, SCR catalysts
 - Catalyst inlet and outlet SO₃ ~0.1 ppmv
- Draeger tubes showed little or no oxidation of NO across either catalyst
 - Analyzer measurements planned for all catalysts
- M26a showed no change in HCl or HF across catalysts

Current Program Schedule

- Coal Creek tests to continue through 2003
 - Effect of exposure time on performance
 - Scrubber removal of catalyst-oxidized Hg (EPRI)
 - Catalyst regeneration (if needed)
- Second pilot unit currently at Spruce plant
 - Installation at ID fan outlet early June
 - Expect startup summer 03 with Pd, SCR, 2 other)